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Radius of gyration, maximum extensibility and 
intrinsic crazing in thermoplastics 
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Physique des MatOriaux de SynthOse 194/8, UniversitO Libre de Bruxelles, 1050 Bruxelles, 
Belgium 

An expression for the radius of gyration of a deformed chain is derived, assuming affine 
deformation of end-to-end vectors defining an entangled length, and random chain behaviour 
on a shorter scale. This expression is compared with small-angle neutron scattering results 
from the literature on variation with strain of the radius of gyration. The theoretical variation of 
the radius of gyration with strain is used to derive an expression for the dependence of limit- 
ing glassy-state extensibility on rubbery state pre-strain. This expression is found to give an 
adequate description of experimental observations of limiting extensibility identified with the 
critical strain for initiation of intrinsic crazing. 

1. Introduction 
In an investigation by small-angle neutron scattering 
(SANS) on polystyrene networks it was found by 
Benoit et al. [1] that although end-to-end vectors join- 
ing crosslinks deform affinely, both in uniaxial exten- 
sion and on swelling, the radii of gyration of chains 
joining crosslinks do not follow the affine model. 
Subsequently, similar investigations on polystyrene 
deformed in the rubbery state [2-5] and on poly- 
styrene [6] and polymethylmethacrylate [7] deformed 
in the glassy state have confirmed that deformation of 
the radii of gyration is not uniformly affine. Various 
interpretations of these observations have been 
advanced, in terms of two competing deformation 
modes [2, 4, 6]. 

An alternative interpretation will be given in this 
paper, in terms of a single deformation mode: it will be 
assumed that the random-chain affine model is applic- 
able to any single entangled length. This leads to 
non-affine deformation of the radius of gyration for 
short chains, progressively shifting to affine defor- 
mation for chains much longer than the entangled 
length. 

It was shown recently that a wide variety of obser- 
vations on glassy polymers were compatible with a 
definition of the entangled length as the length of 
chain required for the reference chain to interact 
with a constant number of neighbouring chains [8]. 
One consequence of the non-affine behaviour of the 
radius of gyration is that a given length of chain 
interacts with a deformation-dependent number of 
neighbours; conversely, the deformation dependence 
of the entangled length can be obtained from that of 
the radius of gyration. When a polymer is pre-oriented 
in the rubbery state, the maximum extensibility on 
subsequently drawing in the glassy state is altered; the 
maximum extensibility has been interpreted by 
Dettenmaier and Kausch [9] as the point at which 
intrinsic crazing appears. It will be shown below that 
the above-mentioned definition of an entangled 

length, combined with the calculated variation of the 
radius of gyration, gives an adequate description of 
maximum extensibility in polycarbonate (PC), as 
obtained from observations by Dettenmaier and 
Kausch [9] and ourselves. 

2. Experimental procedure 
Dumb-bell shaped specimens having gauge dimen- 
sions 40 mm x 8 mm x 2 mm were cut from com- 
mercially available PC sheet (Makrolon). They were 
drawn at 160 ~ C in an Instron tensile tester at various 
crosshead displacement rates, generally 2 cm rain- 1 
Details of pre-orientation conditions are given in 
Table I, and the pre-orientation treatment of one 
sample is shown in Fig. 1. At these strain rates, 
deformation was not totally reversible. When the 
required draw ratio was reached, the sample was 
rapidly cooled at fixed extension by wrapping it in a 
cloth soaked in icy water. The draw ratio 21 was 
determined as the ratio of cross-sectional areas before 
and after drawing. (Deformation was not uniform; 
the samples were distinctly waisted, making measure- 
ments of marker displacements difficult to interpret.) 
Birefringence was measured by compensating with 
a wedge-shaped sample of drawn PC of known 
birefringence. 

The samples were then drawn at 135~ at a cross- 
head displacement rate of 2 cm min -z . Initiation of 
intrinsic crazing was detected optically in transmitted 
light, and was taken as the point at which the relative 
decrease in intensity reached 4%. In this manner, 
initiation of intrinsic crazing could be detected before 
it became distinctly apparent as a stationary stress on 
the stress-strain curve. The method is not infallible at 
low pre-orientations, since surface crazes initiated 
below yield expanding at high draw ratios also cause 
a decrease in transmitted intensity; the presence of 
intrinsic crazing, which gives the samples a distinctive 
translucent appearance, was checked after unloading. 
The draw ratio at initiation of intrinsic crazing, 2~, 
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between crosslinks. In the present context, however, 
diffuse entanglements are assumed, so that the "begin- 
ning" and "end" of the entangled length can be taken 
at random anywhere along the chain; in the literature, 
the term "entanglement length" is usually synony- 
mous with "length between entanglement points" 
implying localized entanglements, and in this paper 
the term "entangled length" will be preferred in order 
to pinpoint the fact that entangling is assumed to be a 
delocalized phenomenon. The situation is depicted 
schematically in Fig. 2. 

An expression for the radius of gyration will now 
be derived, following the lines of thought found in 
Volkenstein [10]. Consider a chain of n e statistical 
segments, assumed rigid, connected by (n e + 1) 
nodes. The vector coordinate ri of the ith node with 
respect to the centre of gravity G is 

Symbol (Figs 4 to 7) 

1 2 See Fig. 1 2.45 0.07 2.02 t~  
2 2 2 1.41 0.90 1.85 �9 
3 2 2 1.52 1.09 1.72 �9 
4 2 4 2.25 1.63 1.53 �9 
5 2 6 2.90 1.85 1.47 �9 
6 2 8 4.27 1.69 1.23 �9 
7 2 8 3.98 1.99 1.26 �9 
8 5 4.2 2.22 2.15 1.33 
9 1 4.1 2.35 1.43 1.53 -e  

10 0.5 4 3.81 0.82 1.79 
I 1 2 8 - 4 2.59 0.43 1.82 �9 
12 2 4 - 2 1.64 0.47 1.86 [] 

was taken as the ratio of cross-sectional areas before 
and after drawing at 135~ 

Finally, the recoverable draw ratio 2r was deter- 
mined after shrinkage at 160 ~ C. 

Results are given and discussed in Section 4.2. 

3. Theory 
3.1. Radius of gyration 
3. 1.1. Single entangled length: n = ne 
3.1.1.1. Individual chain. An appropriate description 
of deformation will differ, depending on the relevant 
scale. On a sufficiently large scale, deformation may be 
assumed uniform, the chain is firmly embedded in the 
surrounding continuum by interactions with neigh- 
bouring chains, and displacements are affine in the 
macroscopic components. On a smaller scale, the 
number of neighbours interaction with a given chain 
decreases, resulting in less efficient restriction of 
motion; and finally, on a local scale the chain con- 
formation may be assumed random, or at least as 
random as compatible with large-scale restrictions on 
conformations. As a first approximation, the inter- 
mediate partially restricted state will be ignored, and 
it will be assumed that a critical number of segments 
n~ exists, such that for n < ne chain configuration is 
random, and that for n > ne the relative displacement 
of chain ends is affine; n e thus defines the entangled 
length of polymer chain. So far the model is similar to 
the rubbery elastic model, in which affine behaviour 
is assumed for end-to-end vectors joining crosslinks, 
and a random configuration is assumed for the chain 

r i = r o i -  tog (1)  

where subscript o refers to the (arbitrary) origin of 
coordinates and g to the centre of gravity. 

The component of the radius of gyration in an 
arbitrary direction 0z is given by 

(z~) -- ( (Zo , -  Zog) 2) 
2 

% Zoi 2 ZOg ( 2 )  

(3) 

Putting the origin at the first node, 

i 

roi=2lj  
j=l  

FIAll 

20 
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T A B  L E I Pre-orientation conditions and draw ratio at initiation of  intrinsic crazing 

Sample / (cm min-1 ) Al (cm) 21 lOOAn, 
No. 

I I I ' l I 

Figure ! Pre-orientation 
Sample 1 (Table I). 
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Figure 2 Schematic representation of deformation: (a) relaxed state, 
(b) deformed state. 

where lj defines the j th  bond. If 0j is the angle between 
lj and the arbitrary z direction, the z component of this 
vector is 

i 

Zoi = ~ l cos O; (4) 
j = l  

and 

2 
Z o i  ~ -  (j=~ t c ~  2 

= 12 cos20j + 2 cos 0j ~ cos O k (5) 
j = l  j = 2  k= l  

The assumption that the chain is free to assume a 
random configuration means that the various values 
of O~ are uncorrelated, so that 

Z2oi = l 2( i (c0s20)  + i ( i -  1 ) < c o s 0 )  2 ) (6) 

where the averages are taken over the whole chain. 
The corresponding coordinate of the centre of gravity 
is given by 

2 1 rte ?le 
- -  

g/e i= =1  j =  = 1  

involving products of the form 
i j 

Zo,Zoi = l 2 Y ,  cos 0h Z cos 0m (8) 
k=l  m - I  

= 12 [i(cos20) + i ( j  -- 1) (cos 0)  2 ] (9) 

assuming i <~ j. Finally: 

2 _=_ 12(n + 1)(2n + 1)(cos20)  
Zog 6n 

+ (n + 1)(n -- l)(3n + 2) (cos 0)  2 (10) 
12n 

and, combining Equations 2, 6 and 10, 

,) cos 
~ = 6--U- 

(11) 

3.1.1.2. Average radius of  gyration. The next step will 
be to find an expression for the radius of gyration, 

averaged over the distribution of end-to-end vectors 
of entangled lengths. (cos 0)  is proportional to the 
projected length of the end-to-end vector on to the 
as-yet arbitrary z axis. Let xp (p = 1, 2, 3) define the 
prificipal directions of strain, 0p the segmental orienta- 
tions with respect to xp, and let 2p be the principal 
draw ratios. As the end-to-end vector deforms affinely, 

(cos 0e) = ).p (cos 0po) (12) 

where the subscript o refers to the initial state. If ~9 is 
the angle between a segment and the end-to-end vec- 
tor (co-latitude), and if the direction cosines of the 
end-to-end vector are cos %, 

(cos Opo ) = cos %0 (cos O0) (13) 

If all entangled lengths are assumed equivalent, 
(cos qJ0) is identical for all chains and is simply the 
reciprocal of the limit of extensibility 2M : 

cos00 = 1/~M 
/'I - 1/2 

Also, since the initial distribution 
chains is isotropic, 

cos2epo = 1/3 (16) 

giving 2p 

(cos 0p) - , f~ x )~M (17) 

The average of (coS20p) over all chains is simply the 
second-order segmental orientation average with res- 
pect to direction Xp, and is expandable in terms of 
second-order Legendre polynomials. From here on 
attention will be restricted to uniaxial symmetry, in 
which case these reduce to the second-order spherical 
harmonic: 

3cos20-  1 
/'2 = 2 (18) 

In the case of uniaxial extension with draw ratio 2 
along the z axis, 

2(P2)  + 1 (cos20z) = 
3 

(14) 

(15) 

of orientations of 

(19) 

(cos 20 x) = (cos 20y) = 1 - (P2 )  (20) 
3 

In this case Equation 17 becomes 

(cos 0z) = 2/31/22~ (21) 

(cos Ox) = (cos 0,)  = 1/(32)1/22 M (22) 

and finally the contributions to the radius of gyration 
in directions parallel and perpendicular to the macro- 
scopic strain are 

n2 - 1 1 2 1 2 (  P2) + 1 + ( ~ - ! ) 2 2 ]  (23) 
R~ - 18n 

R~ - 18n 

In the initial state, since (P2)  = 0 when 2 = 1, both 
equations reduce to 
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and the radius of gyration is then given by 

R2o = ZR~o - 6 ~  ~ -  (26) 
1 

Note that this expression is different from the classical 
result 

R2g = nl2/6 (27) 

because when deriving the classical result (cos 0)  is 
generally assumed negligibly small for long chains; in 
fact, although (cos 0)  is of order n -~/2, it is involved 
in n times more terms than (cos20) so that finally 
both terms are of the same order of magnitude in a 
real chain, however long. 

3. 1.2. Long chains: n > n e 
The condition of uncorrelated angles of rotation will 
generally not be met when the chain length is larger 
than the entangled length: for each successive entangled 
length (cos 0)  will assume the value appropriate for 
the local chain orientation and draw ratio, rather than 
the average for the whole chain. The situation may be 
approximated by assuming the development given in 
the preceding section to be valid for nodes separated 
by fewer than n~ bonds, with the additional assump- 
tion of affine deformation for nodes separated by 
more than ne bonds. The radius of gyration along z is 
then given by 

l'~ n e + l  

22 ne 1 2 _  2 (29) 
- -  Z~o ~ -  - -  Z i - -  Z i o  
El 1 El El e - 7  Vie 

On averaging over all chains, making use of Equation 
23, taking account of the fact that when 2 = 1, 
(P2)  = 0, and making the simplifying assumptions 

2 n > 1 andn~ > 1, 

n2l 2 3 (30) 
i Z~o = 18 2 

= - -  - (31) 
i 18 

2z~ne -- E12e1812 1 + 2(e2 ) + - 22 (32) 
I 

and finally 

- ~ ( 2 2 -  1 - 2(P2))  (33) 

Use of Equation 23 to obtain Equation 30 although 
n > n~ is justified by the fact that initially thermal 
equilibrium is assumed, i.e. the assumptions of random 
configuration and uncorrelated segmental orienta- 
tions are initially assumed valid for the whole chain. 
This might not be justified for very long chains, but in 
this case deformation of the radius of gyration will be 
affine whether the initial state is described by Equation 
29 or not. 

The equivalent expression for R~ is 

R2 = R2o l  } 3n 22n~(~-  1 + ( P 2 ) ) I  (34) 

Equations 33 and 34 reduce to the affine expressions 
when n > no. 

3 . 2 .  M a x i m u m  e x t e n s i b i l i t y  
The maximum extensibility of a polymer network is 
reached when those chains whose end-to-end vectors 
are aligned with the draw direction are fully stretched; 
at this point 

22 = n~ (35) 

In this paragraph, the subscript e will be omitted in an 
effort to improve clarity. 

It has been shown that for polymers with widely 
varying entanglement molecular weights, the ratio of 
end-to-end distance to average spacing is a universal 
constant within experimental scatter [8]. Equivalently, 
the ratio of pervaded to occupied volume is a con- 
stant, which may be thought of as an interaction 
parameter and will be noted k. The implication is that, 
for a chain to be entangled, it must interact with 
a minimum number of neighbouring chains. This 
number must be of the same order of magnitude as k, 
although of course the reference chain does not inter- 
act with all the chains with which it shares the per- 
vaded volume. 

If deformation of the radius of gyration is non- 
affine, the pervaded volume becomes strain-dependent 
and the entangled length must adjust as deformation 
proceeds. 

The assumption of affine transformation of the coil 
dimensions in the glassy state has been made previously 
to obtain a relationship between birefringence and 
strain [11]; the model was in reasonable agreement 
with experimental results, and consequently the 
assumption will be made here that the entangled 
length is independent of strain in the glassy state, 
depending solely on the conformation inherited from 
the melt. On the other hand, when the polymer is 
deformed in the rubbery state, deformation of end-to- 
end vectors is affine, but deformation of the radius of 
gyration is not, resulting in a variation of the entangled 
length as deformation proceeds. 

Consequently, when a polymer has been pre-oriented 
in the rubbery state, the glassy-state extensibility will 
subsequently be limited by the most highly stretched 
chains, which will vary depending on the relative 
orientation of the rubbery-state and glassy-state 
extensions 2~ and 22. 

First consider 2 2 parallel to 21 . The chains limiting 
the glassy-state extensibility will be those whose 
end-to-end vectors are aligned with the initial draw 
direction (IDD), z. If, as before, ~ is the co-latitude 
defining segmental orientation with respect to the end- 
to-end vector, Equation 11 becomes, for directions z 
and x respectively parallel and perpendicular to the 
draw direction, 

n12 (2(P2@))  + 1 ~ )  (z 2) = - ~ \  -~ + (36) 

(x2) = nl--~26 (1 - (P2(~0)))3 (37) 
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where < P2(q')> is the segmental orientation average 
with respect to the end-to-end vector, and the approxi- 
mation n >> 1 has been made. 

The pervaded volume is assumed proportional to 

<x2> n3/2 , = ~ (4P2 + 2 + 32~) '/z (1 - P2) 

(38) 

whereas the occupied volume is proportional to n, and 
the interaction parameter is given by the ratio of 
pervadedto occupied volumes, i.e. 

k = n '/2 ~ ( 4 P  2 + 2 + 3 , ~ )  1/2 (1 - P2) (39) 

where P2 has been substituted for <P2(~)>- 
If the interaction parameter is assumed constant, 

the variation with strain of the number of statistical 
segments in an entangled length is 

(4P20 + 5)(1 - P20) 2 
nil = no (4P2 + 2 + 32~)(1 - -  P2 )  2 (40) 

The segmental orientation average P• is related to the 
fractional extension of the chain, given by 

t = 21//~ M (41) 

A simple and reasonable assumption is to use Treloar's 
approximation for the orientation average resulting 
from the Langevin distribution: 

P2 = 0-6t2 + 0.2t4( 1 + t2) (42) 

The adequacy of this relationship has been demon- 
strated, even for quite small values ofn  [12]. Equation 
40 is now an implicit equation, which can easily be 
solved for n by an iterative procedure. The limit of 
extensibility in the glassy state is finally 

22Mii = nl/2/)~ (43) 

Now consider the case when the glassy-state exten- 
sion is in a direction (e.g. x) perpendicular to the IDD 
(z). The chains limiting glassy-state extensibility are 
now those whose end-to-end vector is aligned with the 
x axis. Deformation is no longer transverse isotropic 
with respect to the x direction; however, the basic 
assumption in this work is that, in the rubbery 
state, deformation of end-to-end vectors defining an 
entangled length is affine in the macroscopic defor- 
mations, and that on any shorter scale the chain con- 
figuration is as random as is compatible with this 
constraint. As transverse dimensions are smaller than 
the end-to-end length, it seems more reasonable to 
assume transverse isotropy of the components of the 
radius of gyration than to assume them to be propor- 
tional to macroscopic deformations. Under the 
assumption of transverse isotropy of chain dimensions, 
2~ must simply be replaced by 1/2~, and Equations 40 
and 43 then become 

n• = 
(4P20 + 5)(1 - -  P20) 2 

n~ + 2 + (3/).,)](1 - P2) 2 (44) 

(nz21)t/2 (45) 

related to the fractional extension 

~2M• -~ 

where P2 is 
(n• -U2. Note that Equations 40 and 45 predict 
anisotropy of the entangled length, depending on 
the glassy-state stretching direction; the common 
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Figure 3 Variation of radius of  gyration with strain. Curves: 
( - - - - )  affine model; ( - - - - )  Equations 23 and 24 with n = 25, 
P2 = 0; ( . . . . . . .  ) the same with P2 from Equation 46; ( - - - )  
Equations 33 and 34, P2 = 0, n = 2 G. Experimental points: (a)  
PS, swollen network, M = 26000 (from [1]); (v,  v) PS, M w = 
1:2 • 105, uniaxial extension, 120~ (from [2]); ('~,1') the same at 
l l0~  ([3, I )  PS network, M = 25000 (from [3]); (9,$) PS, 
M w = 1.2 • 105, uniaxial extension, I10~ (from [4]); (o;,e') the 
same after 1800sec relaxation; (b,~) the same after 10800sec 
relaxation; (o) PMMA, Mw = 6000 blended with Mw = 23 x 104, 
uniaxial extension, 100~ (from [7]). Open symbols: parallel to 
strain, closed symbols: perpendicular to strain. 

assumption of a gradual breakdown of the entangle- 
ment network as deformation proceeds does not 
allow for such anisotropy, so that comparisons of 
maximum extensibility perpendicular and parallel 
to the IDD should discriminate between the two 
assumptions. In fact, as will be shown below, this 
comparison is somewhat inconclusive in the case of 
polycarbonate. 

Note also that, for polymers with a large initial 
entangled length (i.e. small P20), the effect of the 
increase in strain, leading to an increase in the longi- 
tudinal radius of gyration, will predominate over the 
decrease in the transversal radius of gyration ((1 - P2) 
will remain close to unity) at low to moderate strains, 
so that in fact the model predicts a decrese in maxi- 
mum extensibility at moderate pre-strains. This is 
difficult to check experimentally, as polymers with a 
large entangled length tend to craze and are usually 
brittle in the glassy state. 

4. Comparison with experiment 
4.1. Radius of gyration 
Experimental results from various sources are com- 
pared with the predictions of the model developed in 
Section 3.1.1.1 (Equations 23 and 24) and with those 
of the affine model in Fig. 3. In Equations 23 and 24, 
n was set equal to 25, corresponding to a limiting 
extension of 5, and < P2 > was set equal to zero (dashed 
lines) or to the rubbery-elastic theoretical value 
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resulting from integration of Equation 42 (dashed- 
dotted line), i.e. 

1 ,~2 -l'- /~4 

= 15--  - + 3 

, (  3; 
+ ~ 26 + 5 523 (46) 

These predictions are largely insensitive to changes 
in n. 

The dotted lines are calculated from Equations 33 
and 34, with ( P z )  = 0 and n = 2ne. The results 
obtained by Maconnachie et al. [4] on polystyrene 
(PS) undergoing stress relaxation have been plotted in 
Fig. 3 as the ratio of R• and Rll to the final isotropic 
radius of gyration, which was slightly larger than the 
initial value. The draw ratio was taken as the macro- 
scopic, or effective, draw ratio (determined from 
changes of  dimensions), although it would be more 
appropriate to use the molecular draw ratio deter- 
mined from shrinkage. 

Comparison between theory and experiment is 
somewhat obscured by experimental scatter, indi- 
cated by the error bars (when given). It is interesting 
to note, however, that the theory predicts near-affine 
behaviour for chains of only twice the entangled 
length, although experimental deviations from affine 
behaviour are large, even for chains which are much 
longer than the entangled length determined from 
melt elasticity (Me = 18 100), or the critical molecular 
weight from viscosity measurements (Me = 31 200), 
but are interestingly rather close to the critical mol- 
ecular weight at which the compliance determined in 
creep recovery becomes independent of molecular 
weight (M2 = 130 000) (Values for PS are taken from 
Table 5.2 in Graessley [13]). In terms of the present 
model, this could mean that M2 characterizes the scale 
at which deformation is affine, and Mc the scale below 
which random-chain behaviour sets in. Me can be 
thought of as a mathematical artefact obtained by 
identifying the low-strain behaviour of  an entangled 
melt with that of  an ideal rubbery network. If  the 
entanglement effect is indeed distributed along the 

I 

Figure 4 Draw ratio at initiation 
of intrinsic crazing against 
apparent draw ratio after pre- 
orientation at 160 ~ C. 135 ~ C, this 
work: see Table I for symbol key; 
(o) 129~ from [9]; ( ) from 
Equation 40 with n o = 4.4. 

chains as hypothesized here, the number of available 
conformations for a given length of chain is reduced as 
compared with the random chain, giving an increased 
modulus and lower apparent entanglement molecular 
weight: absolute values of entanglement molecular 
weight should be treated with caution, although varia- 
tions between polymers can be accepted as real, since 
M~ and Mc are generally in a constant ratio. 

The results of Hadzioannou et al. [5], obtained on 
PS with Mw = 5.4 x 105 at draw ratios between 2.9 
and 9.4 (not represented in Fig. 3), indicate near-affine 
transformation of radii of gyration at draw ratios up 
to 5, becoming slightly non-affine at the highest draw 
ratio, i.e. 9.4. Clearly, this molecular weight is much 
larger than the critical molecular weight at which 
deformation becomes affine. 

The results of Dettenmaier et aL [7] on high- 
molecular weight polymethylmethacrylate (PMMA) 
(Mw = 1.7 x 105 and 2.5 x 105), also omitted from 
Fig. 3 for clarity, demonstrate that, in this range of 
M,~, variation of Rg is affine in the macroscopic draw 
ratio, within experimental error. 

In summary, measurements of radii of gyration of 
short chains against draw ratio lend support to the 
model presented here, in which long-scale deforma- 
tion is assumed affine and the random-chain approxi- 
mation is applied on a local scale. 

4.2. Maximum draw ratio 
The draw ratio of pre-oriented samples at initiation of 
intrinsic crazing is plotted in Fig. 4 against apparent 
draw ratio 21 after pre-orientation, together with 
results obtained by Dettenmaier and Kausch [9] on 
Makrolon under similar conditions. The theoretical 
curve is calculated from Equation 39, putting no = 4.4 
(i.e. 2M = 2.1 for the unoriented polymer). Although 
the results of Dettenmaier and Kausch follow a 
smooth curve, the results obtained in this laboratory 
exhibit wild scatter, depending on sample preparation. 
The results of Dettenmaier and Kausch [9] obtained 
on samples pre-oriented at a strain rate of 200% min-1 
appear to set an approximate lower limit to our own, 
obtained on samples pre-strained at lower strain rates, 
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and all results lie above the theoretical predictions. 
The points which lie furthest from the theoretical 
predictions correspond to the samples which had 
spent the longest times under strain at 160 ~ C. This 
suggests that the pre-strain might include a non- 
recoverable component: the maximum strain given 
by Equation 40 is defined with respect to the iso- 
tropic relaxed state; the appropriate draw ratio is 
therefore the recoverable draw ratio 2r determined 
after shrinkage. 

The draw ratio at the onset of intrinsic crazing 2~ ~ is 
plotted in Fig. 5 against the recoverable pre-strain )~lr, 
defined as 2r/2~ ~. The underlying hypothesis is that 
recovery of deformation undergone at 135~ is com- 
plete at 160 ~ C, which is indeed the case for unoriented 
samples, and that irrecoverable deformation is linked 
only with pre-orientation conditions. Some scatter 
remains, although it is now greatly reduced. (The 
results of Dettenmaier and Kausch have been omitted 
from Fig. 5, as no shrinkage data were available). The 
remaining scatter is probably traceable to difficulties 
in choosing the appropriate shrinkage time: shrinkage 
at 160~ is initially very fast, but after a couple of 
minutes the shrinkage rate decreases considerably and 
finally becomes negligible after approximately half an 
hour. At this point, recovery is generally far from 
complete, particularly for samples which had been 
pre-strained at low strain rates or submitted to com- 
plicated loading histories. The steady-state value of 
2r was used here, although it might have been more 
appropriate to take the value corresponding to 
immediate recovery. 

Scatter is further reduced when 2~ ~ is plotted against 
An~, the birefringence measured at room temperature 
after pre-orientation (Fig. 6). This suggests that the 
appropriate pre-strain may be correlated with bire- 
fringence. In Fig. 7, 2~ ~ is plotted against values of 
pre-strain obtained from the relationship between 
birefringence and strain measured in creep at 130~ 
(Fig. 8). (This relationship is extremely close to the 
results of Dettenmaier and Kausch [9] at 129 ~ C.) This 
procedure probably underestimates 2,, as birefringence 

k~r 

Figure 5 Draw ratio at initiation 
of intrinsic crazing against re- 
coverable draw ratio determined 
after shrinkage at 160 ~ C. Symbols 
as in Fig. 4. 

in the glassy state is known to include a temperature- 
dependent contribution [11] which probably only 
vanishes at the glass transition [15]. The limiting draw 
ratio now lies below (or to the left of) the theoretical 
prediction, confirming this interpretation. 

To check the internal consistency of the model, the 
results of Dettenmaier and Kausch [9] on samples 
drawn in the glassy state in a direction perpendicular 
to the IDD are compared in Table II with those 
obtained with 22 parallel to the IDD. In  their work, 
the results are presented as 2~ l against An1 ([9], Fig. 7) 
and, for ~ 2  parallel to 2~, as in 2" against 2j (Fig. 8) 
where 2" is the total draw ratio at initiation of intrinsic 
crazing, i.e. 2~2~ ~. In Table II, only those results 
obtained on samples with comparable initial draw 
ratios for both subsequent draw directions are given. 
Draw ratios at the initiation of intrinsic crazing are 
those directly read from [9], Fig. 7. For 22 parallel to 
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Figure 6 Draw ratio at initiation of intrinsic crazing against bire- 
?ringence measured after pre-orientation. Symbols as in Fig. 4. 
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Figure 7 Draw ratio at initiation of intrinsic crazing against draw 
ratio obtained from birefringence and Fig. 8. Symbols as in Fig. 4. 

2~, the apparent draw ratio 2, is obtained from [9], 
Fig. 8; for 22 perpendicular to 2, it is obtained by 
interpolation using the value of An~ read from their 
Fig. 7 and the relationship between Anl and 2~ 
obtained by eliminating 2~ ~ (parallel to 21) between 
Figs 7 and 8 of  [9]. 

Equations 40 and 44 give a relationship between 2 M 
and 2, which can be used to obtain a correspondence 
between )~l and 21, assuming that initiation of  intrinsic 
crazing occurs when the network reaches the maxi- 
mum draw ratio, i.e. 

2~ 1 = 2M/21 22]f2. (47) 

2~' = 2M21/2 2212, (48) 

Conversely, the experimental values of 2~ ~ can be used 
to obtain the corresponding theoretical value of 2l, 
called 2~o in Table II. Also, a "glassy state" value 2~ 
can be obtained from the experimental value of An, 

100 An 

b' I I 
I 1.5 2 

TABLE II Comparison between models for glassy-state limit 
of extensibility 

2~ (ADR) [9] 1.13 1.14 1.35 1.38 2.38 2.39 
221 r [9] 1.98 1.8l 1.43 
22~ [9] 2.20 2.26 2.60 
100Ar~ [9] 0.38 0.41 0.84 0.89 2.38 2.39 
21~ (Equations 40, 44) 1.06 1.10 1.16 1.16 1.47 1.53 
2~g ([9], Fig. 6) 1.06 1.07 l.ll 1.12 1.39 1.39 
21e (Equation 49) 1.07 1.16 1.49 

and from the experimental relationship between bire- 
fringence and strain obtained at 129~ ([9], Fig. 6). 
Lastly, if the limiting strain is assumed to be deter- 
mined by the average "entanglement density", a third 
value, called 2~e, ~an be calculated as 

21 e (] I1 /2n "~2/3 (49) ~ , " 2 •  1"~'2rl t 

Values of 21c and 21e are quite close to each other, 
because in fact Equations 40 and 44 predict only a 
small variation of  maximum extensibility in this range 
of pre-strains. Agreement between values of 2~c for 22 
parallel and perpendicular to the IDD is also fair, and 
can be improved by adjusting the maximum exten- 
sibility of the isotropic material, i.e. by assuming that 
intrinsic crazing occurs slightly below the limiting 
extensibility. This adjustment is not carried out here, 
as it requires definition of a parameter (the ratio 
2H/AM) which is not accessible to experiment. The 
assumption that 2 n is identical to 2 M essentially leaves 
the model with no free parameters. 

The results of  Dettenmaier and Kausch [9] therefore 
do not discriminate clearly between the model pre- 
sented in this paper and the simpler assumption of  a 
constant "entanglement density". (This confirms the 
previous conclusion that, in a variety of applications, 
diffuse entanglements can be approximated by the 
temporary network model [8].) Both models, however, 
give values of pre-strain which are much lower than 
the apparent pre-strain, and which are not far removed 
from those obtained from the glass-state strain corre- 
sponding to the experimentally observed birefringence. 
Again, this seems to be an indication that only part of  

), 
Figure 8 Relation between birefringence and strain in PC 
at 130~ C. 
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the rubbery strain is effective in determining subse- 
quent glassy-state behaviour. A possible interpreta- 
tion of this observation is that, on pre-orientation 
in the rubbery range, rearrangements involve chain 
lengths larger than the instantaneous entangled length, 
which determines immediate recovery on unloading in 
this range, and also subsequent glassy-state behaviour. 
Long-term recovery is determined by larger-scale rear- 
rangements, and permanent deformation involves the 
whole chain. More experimental work is required to 
clarify this point. 

Another point deserving clarification is the predic- 
tion of Equation 39 that, on low strains, the entangled 
length should decrease with increasing strain for 22 
parallel to 2~, particularly for large initial entangled 
lengths. This occurs because (1 - P2) remains close 
to unity at low strains, and the effect of the increase in 
end-to-end length is then dominant in determining the 
pervaded volume. This effect is not large in PC where 
orientation increases rapidly because of the short 
entangled length, but should be more visible in poly- 
mers such as PS having a larger initial maximum 
extensibility. 

5. C o n c l u s i o n s  
A model of chain deformation has been given, in 
which configuration is assumed random on a local 
scale, and deformation is assumed affine on a suf- 
ficiently large scale. The resulting deformation of 
the radius of gyration is affine for long chains and 
less than affine for short chains, in agreement with 
experimental data by SANS from the literature. Non- 
affine transformation of the radius of gyration of an 
entangled length implies a change of the glassy-state 
maximum extensibility after pre-orientation which is 
compatible with experimental results on PC, although 
the possibility of a constant entanglement density 

cannot be ruled out. There is certainly no experimental 
support in this case for the common assumption of a 
breakdown of the entanglement network at high pre- 
strains. 
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